Sample Question Paper - 11

Mathematics-Basic (241)

Class- X, Session: 2021-22 TERM II

Time Allowed: 120 minutes General Instructions:

Maximum Marks: 40

- 1. The question paper consists of 14 questions divided into 3 sections A, B, C.
- 2. All questions are compulsory.
- 3. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- 4. Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.
- 5. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study based questions.

SECTION A

1. Show that $(a - b)^2$, $(a^2 + b^2)$ and $(a + b)^2$ are in AP.

OR.

If $\frac{3}{5}$, a, 4 are three consecutive terms of an A.P., then find the value of a.

- 2. A vertical pole is 100 metres high. Find the angle subtended by the pole at a point on the ground $100\sqrt{3}$ meters from the base of the pole.
- **3.** PQ is a tangent to a circle with centre O at point P. If Δ OPQ is an isosceles triangle, then find \angle OQP.
- 4. If the radius of the sphere is increased by 100%, then how much volume of the corresponding sphere is increased?
- 5. The diameter of a sphere is 6 cm. It is melted and drawn into a wire of diameter 2 mm. What is the length of the wire?
- 6. If the mean of the observation x, x + 3, x + 5, x + 7 and x + 10 is 9, the find the mean of the last three observation **OR**.

Find the class-marks of the classes 10-25 and 35-66.

Section B

- 7. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.
- 8. Water is being pumped out through a circular pipe whose internal diameter is 8 cm. If the rate of flow of water is 80 cm/s, then how many litres of water is being pumped out through this pipe in one hour?
- **9.** Compute the mode for the following frequency distribution:

Size of items (in cm)	0- 4	4-8	8- 12	12-16	16-20	20-24	24-28
Frequency	5	7	9	17	12	10	6

10. The mean of the following frequency distribution is 18. The frequency f in the class interval 19-21 is missing. Determine f.

Class interval	11-13	13-15	15-17	17-19	19-21	21-23	23-25
Frequency	3	6	9	13	f	5	4

OR

Compute the mode for the following frequency distribution:

Size of items (in cm)	0- 4	4-8	8- 12	12-16	16-20	20-24	24-28
Frequency	5	7	9	17	12	10	6

Section C

- 11. If S_n denotes the sum of first n terms of an AP, prove that, $S_{30} = 3(S_{20} S_{10})$
- 12. Draw two tangents to a circle of radius 4 cm, which are inclined to each other at an angle of 60°.

OR

Draw two concentric circle of radii 3 cm and 5 cm. Taking a point on the outer circle, construct the pair of tangents to the inner circle.

13. Model Rocketry: A model rocket is a small rocket designed to reach low altitudes and be recovered by a variety of means. Flying model rockets is a relatively safe and inexpensive way for person to learn the basics of forces and the response of a vehicle to external forces. Like an airplane, a model rocket is subjected to the forces of weight, thrust, and aerodynamics during its flight.

Shalvi is a member of first rocket club of India named STAR Club. She launches her latest rocket from a large field. At the moment its fuel is exhausted, the rocket has a velocity of 240 ft/sec and an altitude of 544 ft. After t sec, its height h(t) above the ground is given by the function $h(t) = -16t^2 + 240t + 544$.

- (i) What is the maximum height attained by the rocket?
- (ii) How many seconds was the rocket airborne after its fuel was exhausted?

14. Well Embankment: Well embankment is a raised wall that is built around the well. These are often constructed using soils obtained from a digging well. It provide protection to person from felling into the well.

A well of diameter 6 m is dug 14 m deep. $\frac{1}{15}$ of the earth taken out is spread evenly all around the well to form a embankment.

- (i) Find the volume of the earth taken out.
- (ii) If the height of embankment is 1.2 m, what is the width of the embankment?

Solution

MATHEMATICS BASIC 241

Class 10 - Mathematics

Time Allowed: 120 minutes

Maximum Marks: 40

General Instructions:

- The question paper consists of 14 questions divided into 3 sections A, B, C.
- All questions are compulsory.
- 3. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.
- Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study based questions.

SECTION A

Show that $(a-b)^2$, (a^2+b^2) and $(a+b)^2$ are in AP. 1.

Given, $(a - b)^2$, $(a^2 + b^2)$ and $(a + b)^2$.

Common difference.

$$d_1 = (a^2 + b^2) - (a - b)^2$$

$$= (a^2 + b^2) - (a^2 + b^2 - 2ab)$$

$$= a^2 + b^2 - a^2 - b^2 + 2ab$$

$$= 2ab$$

and

$$d_2 = (a+b)^2 - (a^2 + b^2)$$
$$= a^2 + b^2 + 2ab - a^2 - b^2 = 2ab$$

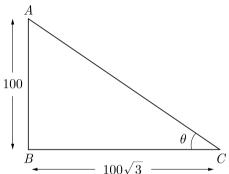
Since, $d_1 = d_2$, thus, $(a - b)^2$, $(a^2 + b^2)$ and $(a + b)^2$ are in AP.

If $\frac{3}{5}$, a, 4 are three consecutive terms of an A.P., then find the value of a.

Sol:

If $\frac{3}{5}$, a, 4 are in A.P., then

$$2a = \frac{3}{5} + 4$$


$$2a = \frac{23}{5}$$

$$a = \frac{23}{10}$$

2. A vertical pole is 100 metres high. Find the angle subtended by the pole at a point on the ground $100\sqrt{3}$ meters from the base of the pole.

Sol:

Let the angle be θ . As per given in question, we have drawn figure below

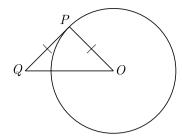
In $\triangle ABC$,

$$\tan \theta = \frac{AB}{BC} = \frac{100}{100\sqrt{3}}$$
$$= \frac{1}{\sqrt{3}} = \tan 30^{\circ}$$
$$= \tan 30^{\circ}$$

 $\tan \theta = \tan 30^{\circ}$

 $\theta = 30^{\circ}$ Thus

PQ is a tangent to a circle with centre O at point P. If $\triangle OPQ$ is an isosceles triangle, then find $\angle OQP$. Sol:


> Given PQ is a tangent to a circle with centre O at P and ΔOPQ is isosceles.

$$PQ = PQ$$

$$\angle Q = \angle O$$

We draw the figure as given below.

Since tangent is perpendicular to the radius at point of contact,

$$\angle P = 90^{\circ}$$

Now, in $\triangle OPQ$,

$$\angle P + \angle Q + \angle O = 180^{\circ}$$
 [Angle sum properly]
 $90^{\circ} + 2\angle Q = 180^{\circ}$
 $2\angle Q = 90^{\circ}$
 $\angle Q = 45^{\circ}$

Thus

$$\angle OQP = 45^{\circ}$$

4. If the radius of the sphere is increased by 100%, then how much volume of the corresponding sphere is increased?

Sol:

Let r be the original radius of sphere. If we increased radius by 100 %. it will be 2r.

$$V_r = \frac{4}{3}\pi r^3$$

Now $V_{2r} = \frac{4}{3}\pi \times (2r)^3$
 $= \frac{4}{3}\pi \times 8r^3$

Thus new volume is 8 times of original volume.

Hence when the radius is increased by 100%, the corresponding volume becomes 800% and thus increase is 700%.

5. The diameter of a sphere is 6 cm. It is melted and drawn into a wire of diameter 2 mm. What is the length of the wire?

Sol:

Let the length of the wire be l. Since, metallic sphere is converted into a cylindrical shaped wire of length l,

Volume of the metal used in wire is equal to the volume of the sphere.

$$\pi r^2 l = \frac{4}{3} \pi R^3$$

$$\pi \times \left(\frac{2}{2} \times \frac{1}{10}\right)^2 \times l = \frac{4}{3} \times \pi \times \left(\frac{6}{2}\right)^3$$

$$\pi \times \frac{1}{100} \times h = \frac{4}{3} \times \pi \times 3^{3}$$
$$\frac{l}{100} = 4 \times 3^{2} = 36$$
$$l = 3600 \text{ cm} = 36 \text{ m}$$

6. If the mean of the observation x, x + 3, x + 5, x + 7 and x + 10 is 9, the find the mean of the last three observation

Sol:

Mean =
$$\frac{\text{Sum of all the observations}}{\text{Total no. of observation}}$$

$$9 = \frac{x+x+3+x+5+x+7+x+10}{5}$$

$$9 = \frac{5x+25}{5}$$

$$x = 4$$

So, mean of last three observation,

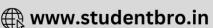
$$= \frac{x+5+x+7+x+10}{3} = \frac{5x+22}{3}$$
$$\frac{3x+22}{3} = \frac{3\times 4+22}{3}$$
$$= \frac{12+22}{3} = \frac{34}{3} = 11\frac{1}{3}$$

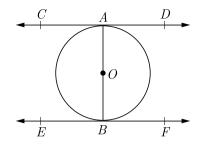
 \mathbf{or}

Find the class-marks of the classes 10-25 and 35-66. Sol:

Class mark of
$$10 - 25$$
, $= \frac{10 + 25}{2}$
 $= \frac{35}{2} = 17.5$

and class mark of 35-55, $=\frac{35+55}{2}$ $=\frac{90}{2}=45$


Section B


7. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Sol:

Let AB be a diameter of a given circle and let CD and RF be the tangents drawn to the circle at A and B respectively as shown in figure below.

Here $AB \perp CD$ and $AB \perp EF$

Thus
$$\angle CAB = 90^{\circ} \text{ and } \angle ABF = 90^{\circ}$$

Hence
$$\angle CAB = \angle ABF$$

and $\angle ABE = \angle BAD$

Hence $\angle CAB$ and $\angle ABF$ also $\angle ABE$ and $\angle BAD$ are alternate interior angles.

$$CD \mid\mid EF$$
 Hence Proved

8. Water is being pumped out through a circular pipe whose internal diameter is 8 cm. If the rate of flow of water is 80 cm/s, then how many litres of water is being pumped out through this pipe in one hour?

Length of water that flows in 1 sec is 80 cm.

Radius of pipe
$$=\frac{8}{2} = 4 \text{ cm}$$

Thus, volume of water flows in 1 sec

$$= \pi \times (4)^2 \times 80$$
$$= 128\pi \text{ cm}^3$$

Volume of water flows in 1 hour

$$= 128\pi \times 60 \times 60$$
$$= 460800\pi \text{ cm}^{3}$$
$$= 14469120 \text{ cm}^{3}$$
$$= 14469.12 \text{ L}$$

$$[1 \text{ Lit} = 1000 \text{ cm}^3]$$

9. Compute the mode for the following frequency distribution:

Size of items (in cm)	0-	4-	8-	12-	16-	20-	24-
	4	8	12	16	20	24	28
Frequency	5	7	9	17	12	10	6

Sol:

Class 12-16 has the maximum frequency 17, therefore this is model class.

We have
$$l = 12$$
, $f_1 = 17$, $f_0 = 9$, $f_2 = 12$ and $h = 4$

Mode
$$M_o = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

 $= 12 + \left(\frac{17 - 9}{2 \times 17 - 9 - 12}\right) \times 4$
 $= 12 + \frac{8 \times 4}{13} = 12 + 2.46 = 14.46$

10. The mean of the following frequency distribution is 18. The frequency f in the class interval 19-21 is missing. Determine f.

Class	11-	13-	15-	17-	19-	21-	23-
interval	13	15	17	19	21	23	25
Frequency	3	6	9	13	f	5	4

Sol:

Class	Class Mark	Frequency	$\int_i x_i$
11-13	12	3	36
13-15	14	6	84
15-17	16	9	144
17-19	18	13	234
19-21	20	f	20f
21-23	22	5	110
23-25	24	4	96
	Total	40 + f	704 + 20f

We have
$$\sum f_i = 40 + f$$

$$\sum f_i x_i = 704 + 20f$$
 Mean,
$$M = \frac{\sum f_i x_i}{\sum f_i}$$

$$18 = \frac{704 \times 20f}{40 + f}$$

$$720 + 18f = 704 + 20f$$

$$f = 8$$

Compute the mode for the following frequency distribution:

Size of items (in cm)	0-	4-	8-	12-	16-	20-	24-
	4	8	12	16	20	24	28
Frequency	5	7	9	17	12	10	6

Sol:

Class 12-16 has the maximum frequency 17, therefore this is model class.

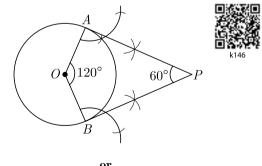
We have $l = 12, f_1 = 17, f_0 = 9, f_2 = 12 \text{ and } h = 4$

Mode
$$M_o = l + \left(\frac{f_l - f_0}{2f_l - f_0 - f_2}\right) \times h$$

 $= 12 + \left(\frac{17 - 9}{2 \times 17 - 9 - 12}\right) \times 4$ n₂₀₅
 $= 12 + \frac{8 \times 4}{13} = 12 + 2.46 = 14.46$

Section C

11. If S_n denotes the sum of first n terms of an AP, prove that, $S_{30} = 3(S_{20} - S_{10})$ Sol:

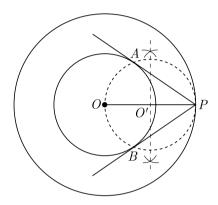

Let the first term be a, and common difference be d.

Now
$$S_{30} = \frac{30}{2}(2a + 29d)$$
 ...(1)
 $= 15(2a + 29d)$
 $3(S_{20} - S_{10}) = 3[10(2a + 19d) - 5 \ 2a + 9$
 $= 3[20a + 190d - 10a - 45$
 $= 3[10a + 145d]$
 $= 15[2a + 29d]$...(2)
Hence $S_{30} = 3(S_{20} - S_{10})$

12. Draw two tangents to a circle of radius 4 cm, which are inclined to each other at an angle of 60°.
Sol:

Step of construction:

- 1. Draw a circle of radius 4 cm with O as centre.
- 2. Draw two radii OA and OB inclined to each other at an angle of 120° .
- 3. Draw $AP \perp OA$ at A and $BP \perp OB$ at B, which meet at P.
- 4. PA and PB are the required tangents inclined to each other an angle of 60° .



Draw two concentric circle of radii 3 cm and 5 cm. Taking a point on the outer circle, construct the pair of tangents to the inner circle.

Sol:

Steps of Construction:

- 1. Draw a circle with radius 3 cm and centre O.
- Draw another circle with centre O and radius 5 cm.
- 3. Take a point P on the circumference of outer circle and join O to P.
- 4. Taking OP as diameter draw another circle which intersect the smallest circle at A and B.
- 5. Join A to P and B to P. AP and BP are the required tangents.

13. Model Rocketry: A model rocket is a small rocket designed to reach low altitudes and be recovered by a variety of means. Flying model rockets is a relatively safe and inexpensive way for person to learn the basics of forces and the response of a vehicle to external forces. Like an airplane, a model rocket is subjected to the forces of weight, thrust, and aerodynamics during its flight.

Shalvi is a member of first rocket club of India named STAR Club. She launches her latest rocket from a large field. At the moment its fuel is exhausted, the

rocket has a velocity of 240 ft/sec and an altitude of 544 ft. After t sec, its height h(t) above the ground is given by the function $h(t) = -16t^2 + 240t + 544$.

- (i) What is the maximum height attained by the rocket?
- (ii) How many seconds was the rocket airborne after its fuel was exhausted?

Sol:

We have,
$$h(t) = -16t^2 + 240t + 544$$

(i)
$$h(t) = -16t^2 + 240t + 544$$
$$= -16(t^2 - 15t) + 544$$
$$= -16(t^2 - 15t + 7.5^2 - 7.5^2) + 544$$
$$= -16(t - 7.5)^2 + 16 \times 7.5^2 + 544$$
$$= -16(t - 7.5)^2 + 900 + 544$$
$$= -16(t - 7.5)^2 + 1444$$

From above equation it is clear that h(t) is maximum at t = 7.5 second and this maximum value is 1444 feet.

(ii) For airbonre time, h will be zero.

$$0 = -16t^{2} + 240t + 544$$

$$0 = t^{2} - 15t - 34$$

$$0 = (t - 17)(t + 2)$$

$$t = 17 \text{ sec}$$

14. Well Embankment: Well embankment is a raised wall that is built around the well. These are often constructed using soils obtained from a digging well. It provide protection to person from felling into the well.

A well of diameter 6 m is dug 14 m deep. $\frac{1}{15}$ of the earth taken out is spread evenly all around the well to form a embankment.

(i) Find the volume of the earth taken out.

(ii) If the height of embankment is 1.2 m, what is the width of the embankment?

Sol:

(i) Depth of well, d = 14 m,

Radius,
$$r = \frac{6}{2} = 3 \text{ m.}$$

Volume of earth taken out,

$$\pi r^2 h = \frac{22}{7} \times (3)^2 \times 14 = 396 \text{ m}^3$$

(ii) Let w be the width of embankment. The radius of outer circle of embankment

$$= 3 + u$$

Area of upper surface of embankment

$$= \pi [(3+w)^2 - (3)^2]$$

Volume of embankment $=\frac{1}{15}$ of volume of earth taken out

$$\pi[(3+w)^2 - (3)^2] \times 1.2 = \frac{1}{15} \times 396$$

$$\pi(9+w^2+6w-9) \times 1.2 = \frac{1}{15} \times 396$$

$$\frac{22}{7}(w^2+6w) \times 1.2 = \frac{1}{15} \times 396$$

$$w^2+6w = \frac{396 \times 7}{15 \times 1.2 \times 22} = 7$$

$$w^2+6w-7 = 0$$

$$(w+7)(w-1) = 0$$

$$w = 1$$

Hence width of embankment is 1 m.

